

CONTENTS

Specifications Section 1 Introduction. 1 Section 2 Operating Procedure 3 Section 3 Calibration 9 Section 4 Service and Maintenance 11 Section 5 Type 1262-B Power Supply 18

Handbook of Noise Measurement

This 282-page book, by Dr. A. P. G. Peterson and Ervin E. Gross, Jr., of the General Radio Engineering Staff, covers thoroughly the subject of noise and vibration measurement. Copies are available from General Radio at \$1.00 each, postpaid in the United States and Canada.

Copyright 1968 by GENERAL RADIO COMPANY West Concord, Massachusetts USA 01781 Form 1551-0110-Q ID-1276 December, 1968

SPECIFICATIONS

Sound-Level Range: From 24 to 150 dB (re 20 µN/m²).

Frequency Characteristics: Four response characteristics, A, B, C, or 20 kHz, as selected by panel switch. The A-, B-, and Cweighting positions are in accordance with USA Standard S1.4-1961 and IEC Publication 123, 1961. Frequency response for the 20-kHz position is flat from 20 Hz to 20 kHz, so that complete use can be made of very wide-band microphones such as the 1551-P1 Condenser Microphone Systems.

Microphone: GR Type 1560-P5. Accessory condenser microphone is available.

Sound-Level Indication: Sound level is indicated by the sum of the meter and attenuator readings. The clearly marked, open-scale meter covers a span of 16 dB with calibration from --6 to +10 dB. The attenuator is calibrated in 10-dB steps from 30 to 140 dB above 20 μ N/m².

Calibration Accuracy: When amplifier sensitivity has been standardized, the absolute accuracy of sound-level measurements at 500 Hz is within \pm 1 dB and at all frequencies is in accordance with the USA Standard.

Panel adjustment is provided for standardizing amplifier gain with internal calibration circuit.

Absolute acoustic sensitivity is factory calibrated at 500 Hz. Microphone response and sensitivity are measured in a free field from 20 Hz to 15 kHz by comparison with a WE 640AA laboratorystandard microphone with calibration traceable to the National Bureau of Standards. Complete electrical frequency-response measurements are made on each instrument.

The 1562-A Sound-Level Calibrator or the 1559-B Microphone Reciprocity Calibrator can be used for making periodic over-all acoustic checks.

Output: 1.4 V behind 7000 Ω (panel meter at full scale). The output can be used to drive analyzers, recorders, oscilloscopes, and headphones. Harmonic distortion (panel meter at full scale) <1%.

Input Impedance: 25 M Ω in parallel with 50 pF.

Meter: Rms response, and fast and slow meter speeds in accordance with USA \$1.4-1961 and IEC 123, 1961.

Environmental Effects

Temperature and Humidity: Microphone is not damaged at temperatures from -30 to $+95^{\circ}$ C and relative humidities from 0 to 100%. When standardized by its internal calibration system or a 1562 Sound-Level Calibrator, the instrument will operate within catalog specifications (for panel-meter indications above 0 dB) over the temperature range of 0 to 60°C and the relative humidity range of 0 to 90%.

Magnetic Fields: When exposed to a 60-Hz, 1-oersted (80 A/m) field, the sound-level meter will indicate 60 dB (C weighting) when oriented for maximum sensitivity to the magnetic field.

Electrostatic Fields: Aluminum case provides sufficient shielding, so that normally encountered electrostatic fields have no effect. Vibration: Case is fitted with soft rubber feet and amplifier is resiliently mounted for vibration isolation. When the instrument is set on its feet on a shake table and vibrated at 10 mils pk-pk displacement over the frequency range of 10 to 55 Hz, the unwanted signals generated do not exceed an equivalent C-weighted sound-pressure level of 45 dB when motion is vertical, 60 dB when motion is lengthwise, or 40 dB when motion is sidewise.

SPECIFICATIONS (Con't)

GENERAL

Power Supply: Two 1½-V size D flashlight cells and one 67½-V battery (Burgess XX45 or equivalent) are supplied. An ac power supply, the Type 1262-B, is available.

Accessories Supplied: Telephone plug.

Accessories Available: 1551-P2 Leather Case (permits operation of instrument without removal from case), 1562 Sound-Level Calibrator, 1560-P95 Adaptor Cable for connecting output to 1521-B Graphic Level Recorder.

Mounting: Aluminum cabinet.

Dimensions (width x height x depth): 744 x 944 x 61/s in. (185 x 235 x 160 mm).

Weight, Net, 734 lb (3.6 kg); shipping, 16 lb (7.5 kg), batteries incl. Add 2 lb for leather case.

For a more detailed description, refer to General Radio Experimenter, August 1961.

TABLE OF CONTENTS

Section 1. INTRODUCTION	
1.1 Purpose	•
1.2 Description	•
1.3 Power Supply	•
1.4 Carrying Case	•
Section 2. OPERATING PROCEDURE	
2.1 Preliminary Checks	
2.2 Operating Procedure	•
2.3 Selection of Weighting Network	•
2.4 Sound Analysis and Recording	
2.5 Extension Cable	
2.6 Wide-Range Microphones,	
2.7 Use of Headphones	
2.8 Background Noise	
2.9 Microphonics	
2.10 Environmental Effects	
2.11 Vibration Pickup	
3.1 General	•
Section 4. SERVICE AND MAINTENANCE	
4.1 General	. 1
4.2 Removal of Instrument from Cabinet	•
4.3 Tube Failure	. 1
4.4 Tube Replacement	•
4.5 Battery Replacement	•
4.6 Replacement of Bias Cell	•
4.7 Soldering of Connections to Cable Wires	. '
4.8 Microphone Sensitivity Adjustment	. '
4.9 Internal Noise	. '
4.10 Amplifier Gain	. '
4.10 Amplifier Gain. .	•

.

Section 1 INTRODUCTION

1.1 PURPOSE. The Type 1551-C Sound-Level Meter (Figure 1) is the basic instrument of the General Radio sound-measuring system. This instrument conforms to all requirements of the ASA American Standard Specification for General Purpose Sound-Level Meters. An accurate, portable, low-priced meter, it indicates the sound-pressure level at its microphone in terms of a standard reference level ($0.0002 \mu bar$).¹

In addition to its primary use as a Sound-Level Meter, the Type 1551-C can be used as a highly sensitive ac voltmeter. With the microphone sensitivity adjustment (paragraph 4.8) set at -55.5 and the attenuator switch set at 30, the meter has a full-scale sensitivity of 30 microvolts. Voltages to be measured can be applied to the microphone connector through a Cannon three-terminal plug.

1.2 DESCRIPTION.

1.2.1 GENERAL. The major components of the Sound-Level Meter are a nondirectional microphone, a calibrated attenuator, an amplifier, an indicating meter, and weighting networks to modify the amplifier frequency response.

1.2.2 MICROPHONE. The Type 1560-P5 Microphone supplied with the Type 1551 Sound-Level Meter is a new piezoelectric ceramic microphone developed expressly for sound-level meter use. Several features of the Type 1560-P5 make it an excellent microphone for sound-level measurements:

¹0.0002 μ bar = 20 μ N/m²; cps = Hz.

Figure 2. Frequency response of Type 1560-P5 Microphone to sounds of random incidence.

1. a frequency characteristic (see Figure 2) carefully controlled in manufacture to give flat response to sounds of random incidence from $20\ {\rm cps}$ to $12\ {\rm kc}$,

2. rugged, dependable design, capable of withstanding wide climatic changes (from -30° to 200° F in temperature, from 0 to 100% relative humidity),

3. low temperature coefficient of sensitivity, with minimal change in output voltage from 0° to 200° F,

4. low temperature coefficient of internal impedance; the cable correction is not affected by temperature at the microphone.

The nominal internal impedance of the microphone is 380 pf.

1.2.3 CONTROLS AND CONNECTORS. The controls and connectors on the panel of the Sound-Level Meter are listed below.

Name	Туре	Function
Attenuator	12-position selector switch	Selects meter range.
CAL	Thumb-set adjustment	Electrical internal calibration or gain adjustment.
METER- BATTERIES	5-position selector switch	Selects fast or slow meter response; provides battery checks.
WEIGHTING	5-position selector switch	Selects weighting.
OUTPUT	Phone jack	Output connection.
On-Off	Switch built into micro- phone arm	Turns instrument on and off (with battery power only).
None	6-terminal Jones receptacle	Connection to Type 1262-B Power Supply.

TABLE 1. CONTROLS AND CONNECTORS

1.3 POWER SUPPLY.

1.3.1 BATTERIES. Two Type D flashlight batteries supply the filament (A) power, and one 67-1/2-volt portable-radio-type B battery supplies the plate (B) power for the instrument. Contact is made to each battery by spring terminals, and all batteries are secured by a screw-down bracket.

1.3.2 AC POWER SUPPLY. The Type 1262-B Power Supply (refer to section 5) can be used to operate the Sound-Level Meter from a 115-volt ac line. When the Type 1262-B is used, its own power switch, rather than the microphone switch on the Type 1551-C, controls application of power to the Sound-Level Meter.

1.4 CARRYING CASE. Available for use with the Sound-Level Meter is a leather carrying case with shoulder straps. A hole in the back of this case matches the tapped hole in the back of the Sound-Level Meter so that the instrument can be secured in the case for field use. The cover flaps of the case are equipped with a luggage-type fastener to keep them closed over the panel and with snap buttons to hold them open when the instrument is in use.

Section 2

OPERATING PROCEDURE

2.1 PRELIMINARY CHECKS.

2.1.1 BATTERY CHECK. To check batteries, set the METER-BATTER-IES switch to FIL-1, turn the instrument on by raising the microphone, and check that the meter pointer is within the area marked BAT on the meter face. Turn the METER-BATTERIES switch to FIL-2 and then to PL, similarly checking that the meter pointer falls in the white BAT area for each position.

Filament batteries should last 6 to 7 days at 8 hours a day, or 30 to 35 days at 2 hours a day. Plate batteries should last 12 to 14 days at 8 hours a day, or 60 to 70 days at 2 hours a day.

2.1.2 CALIBRATION CHECK. Before using the Sound-Level Meter, make the following simple calibration check. (This check calibrates the amplifier of the Sound-Level Meter, but does not include a check on the microphone.)

a. Turn the instrument on.

b. Set the attenuator switch to 130 CAL (i.e., with the pointer on the knob toward the window).

c. Set the WEIGHTING switch to CAL, and check that the meter pointer falls within the white area marked CAL on the meter face. If not, set it there by adjusting the CAL thumbset control.

2.1.3 ACOUSTICAL CALIBRATION. The following over-all acoustical calibration can be made with the 1562 Sound-Level Calibrator. This calibration checks the microphone sensitivity as well as the amplifier sensitivity.

Perform the calibration check as described in paragraph 2.1.2. Then set the WEIGHTING switch to FLAT. Turn on the calibrator and set its frequency to 500 cps. Place the calibrator over the microphone. The sound-level meter should read 114 ± 0.5 dB (refer to paragraph 2.2). Switch the calibrator to each of its other frequencies. If the reading of the sound-level meter at 1000 cps is not between 113 and 115 dB, and/or if the readings at the various frequencies vary by more than ± 1 dB, it is possible that the microphone has been damaged; it should then be checked independently.

When the microphone is known to be in good condition, the gain of the sound-level meter can be calibrated by setting the meter reading to 114 dB at 1000 cps by means of the CAL control.

The above calibration will be made free of charge for any GR sound-level meter delivered to one of the General Radio offices listed elsewhere in this manual.

2.2 OPERATING PROCEDURE.

a. Turn the instrument on by raising the microphone (battery power) or by turning on the Type 1262-B (ac power).

b. Adjust the WEIGHTING switch for the desired frequency response. Refer to paragraph 2.3.

c. Adjust the attenuator switch for an on-scale deflection of the indicating meter. The sound level in decibels is the algebraic sum of the readings of attenuator dial and meter.

d. Set the METER-BATTERIES switch to FAST or SLOW depending on the type of meter response desired. The fast response is suitable for most noise measurements and for measuring minimum and maximum values of fluctuating sounds. The SLOW position provides a high degree of damping for measuring the average value of fluctuating sounds.

2.3 SELECTION OF WEIGHTING NETWORK. Many early noise criteria specified weighted sound levels, using this rule of thumb: A weighting for sound levels from 24 to 55 db, B for levels from 55 to 85 db, and C for levels from 85 to 140 db. (The appropriate range was selected after a preliminary C-weighted measurement.) More recent opinions favor selection of weighting network on the basis of the type of noise measurement; for instance, A weighting is often preferred for speech-interference measurements, while B is recommended for surveys of traffic noise. In the absence of specific weighting requirements, it is usually helpful to take measurements on all three weighting networks. For a full discussion of weighting networks, refer to the General Radio Handbook of Noise Measurement. Response curves for the various weighting networks, equalized for microphone response, are given in Figure 3.

Figure 3. Typical Acoustical and Electrical Response Curves for Type 1551-C.

If the Sound-Level Meter is to be used with an analyzer or recorder, set the WEIGHTING switch to 20 kc or to C. When an extended-range microphone is used in place of the microphone supplied with the instrument, use the 20 kc position.

2.4 SOUND ANALYSIS AND RECORDING. The low-distortion outputamplifier circuit of the Sound-Level Meter was designed especially for use with the Type 1558-A Octave-Band Analyzer and Type 1564-A Sound and Vibration Analyzer. Other analyzers, such as the Type 1900-A Wave Analyzer, can also be used. Connect the input of the analyzer or recorder to the OUTPUT phone jack on the Sound-Level Meter. For greatest accuracy, the impedance connected to the output circuit of the Sound-Level Meter should be about 20,000 to 25,000 ohms. The output impedance is 7000 ohms, and output voltage is 1.1 V into 20,000 ohms, 1.5 V opencircuit. Any load impedance can be connected across the output terminals.

The output system of the Sound-Level Meter can be used to drive a Type 1521 Graphic Level Recorder to obtain permanent records of sound measurements, or to operate a magnetic tape recorder to obtain field records that may be studied and analyzed later in the laboratory.

When recording or analyzing, set the attenuator switch so that the meter reads +6 db or more, if possible, to utilize the maximum dynamic range. If the meter reading falls below +6 db, it is sometimes desirable to set the attenuator switch one step lower, even if the meter pointer goes off scale as a result.

The internal calibration system of the Sound-Level Meter makes available, at the OUT jack, the 1000-cycle signal useful for setting the level of an analyzer or recorder to match that of the Sound-Level Meter.

2.5 EXTENSION CABLE. The Type 1560-P73*25-foot Extension Cable can be used to permit operation of the microphone at some distance from the meter. The extension cable introduces about 7 db loss. For best measurements this cable insertion loss should be determined by calibration with a Type 1562 Calibrator.

2.6 WIDE - RANGE MICROPHONES. The over-all frequency response characteristic of the Type 1551-C, with the WEIGHTING switch set at 20 kc, is essentially flat from 20 cps to 20 kc. (See Figure 4.) This permits use of such wide-range microphones as those used in the Types 1551-P1L and 1551-P1H Condenser Microphone Systems.

The Type 1551-P1L uses the Altec 21-BR-150 Condenser Microphone, useful over the sound-pressure range from 50 to 150 db. The Type 1551-P1H uses the Altec Type 21-BR-180 Microphone, useful from about 70 to 170 db. (When using the Type 1551-P1L, set the meter to 121 rather than 120 db in the calibration described in paragraph 2.1.3. When using the Type 1551-P1H, set the meter to 101 db and thereafter add 20 db to meter readings.) These microphones have a good frequency response from 20 cps to 18 kc.

*Also supplied as part of the Type 1560-P34 Tripod and 25-ft Cable Assembly.

Figure 4. Frequency Response of Type 1551-C Amplifier with WEIGHTING switch at 20 kc.

Also useful with the Type 1551-C over the range from 80 to 200 db is the Massa Type M-141F Standard Microphone, a piezoelectric microphone available from the Massa Laboratories Inc, Hingham, Mass. Its response is reasonably uniform up to 30 kc.

2.7 USE OF HE ADPHONES. If desired, a set of headphones can be plugged into the OUTPUT jack to monitor the sound being measured.

2.8 BACKGROUND NOISE. When possible, sound measurements should be made with negligible background noise - at least 10 db below the level being measured. However, this is not always possible, and Figure 5 is convenient in determination of errors caused by background noise.

2.9 MICROPHONICS. When high-intensity sound fields are being measured, it is good practice to use the microphone on the end of a cable (refer to paragraph 2.5) and to keep the Sound-Level Meter well removed from the sound field. This is especially true if the high-level noise contains frequencies of 1000 cps or higher. The following quick check will determine whether the tubes in the Type 1551-C are being excited microphonically: remove the microphone head, set the WEIGHTING switch to A, and check that there is no meter reading with the attenuator switch set at 70 db or higher.

At sound levels below 140 db no special vibration precautions should be necessary. The amplifier is resiliently mounted, vacuum tubes are resiliently mounted on the amplifier board, the amplifier cover is specially treated to reduce airborne sound transmission, and the instrument sits on soft rubber-feet.

When the Sound-Level Meter, with microphone replaced by an equivalent electrical impedance, is subjected to pure-tone sounds at a soundpressure level of 100 db re $0.0002 \mu bar$ at each frequency between 100 and 8000 cps, the output level in each octave band is at least 30 db below that for full-scale meter reading with the attenuator set for 100 db fullscale meter reading.

The Type 1551-C, with its microphone mounted on the panel microphone post, can measure sound pressure levels up to 140 db within the tolerances allowed in ASA S1.4, 1961. When the microphone is mounted on a cable, the maximum safe sound pressure level for the microphone is 150 db.

With an auxiliary high-level microphone separated from the Sound-Level Meter by a long cable to protect meter and operator from intense sound fields, levels up to 200 db can be measured.

2.10 ENVIRONMENTAL EFFECTS.

2.10.1 TEMPERATURE AND HUMIDITY. The Type 1560-P5 Microphone is not damaged at temperatures from -30° to $+95^{\circ}$ C and relative humidities from 0 to 100%. When standardized by its internal calibration system or a Type 1562 Sound-Level Calibrator, the Type 1551-C will operate within catalog specifications (for panel-meter indications above 0 db) over the temperature range from 0 to 60 C and the relative-humidity range from 0 to 80%.

The internal impedance of the microphone is capacitive, 475 pf at 25° C, varying from 445 to 510 pf from 0 to 50° C.

2.10.2 VIBRATION. The Type 1551-C case is fitted with soft rubber feet and the amplifier compartment is resiliently mounted for vibration isolation. When set on its rubber feet on a shake table and vibrated over the frequency range of 10 cps to 55 cps, the motion transmitted to the amplifier generates unwanted signals. The magnitude of these signals is listed in the table below.

peak-to -peak	direct	tion of vil	oration		
lisplacement	x	У	z		
nches)	maxin	num meter	reading(db)		
0.030	65	70	55	I YK	Ø
0.010	45	60	40		-y

2.10.3 MAGNETIC FIELDS. When exposed to a time-varying magnetic field of 1 oersted, the Type 1551-C will indicate 60 db when oriented for maximum sensitivity to the magnetic field.

2.10.4 ELECTROSTATIC FIELDS. The Type 1551-C is completely enclosed in an aluminum case so that the instrument is not affected by the electrostatic fields which are normally encountered.

2.11 VIBRATION PICKUP. It is often possible to measure the vibration amplitude, velocity, or acceleration of radiating surfaces. Useful vibration measurements can often be obtained where high ambient sound levels make acoustical measurements impossible. For vibration frequencies between 20 and 2000 cps, the Type 1551-C will operate as a vibration meter when used with a Type 1560-P11B Vibration Pickup System. With a Type 1560-P11S2 Vibration Pickup System (refer to the General Radio <u>Experimenter</u>, Volume 36, Number 11, November 1962), the Type 1551-C can be used for vibration measurements between 20 and 10,000 cps.

Refer to the General Radio <u>Handbook of Noise Measurement</u> for further information on vibration measurements.

Section 3

CALIBRATION

3.1 GENERAL. The calibration (acoustical and electrical) of the Type 1551-C Sound-Level Meter is carried out with pure tones. The Sound-Level Meter calibration is adjusted for random incidence sounds with the microphone mounted on the panel microphone post.

Microphone calibrations are made at 0 degrees (perpendicular incidence) in a free field with the microphone at the end of a cable. All microphone calibrations supplied by General Radio are at 0 degrees incidence. A correction curve is supplied to convert from 0 degrees to random-incidence response.

3.2 OBSERVER INFLUENCE. When measurements are made in reverberant or semireverberant fields, the observer and Sound-Level Meter case have a very small effect on the microphone response. Under freefield conditions and with a single sound source, both the observer and the case can have a large effect on microphone response (refer to the General Radio <u>Handbook of Noise Measurement</u>). These effects can be minimized if the instrument is held in front of the observer, with the observer oriented so that the sound passes in front of him at right angles to the axis of the Sound-Level Meter and its microphone.

For greatest accuracy it is recommended that the microphone be mounted on a tripod and connected to the Sound-Level Meter by an extention cable to keep the observer and the meter case out of the sound field being measured. 3.3 PREFERRED ANGLE OF INCIDENCE. When measurements are made on sounds in reverberant fields, the angle of incidence of sounds reaching the microphone is indeterminant. In this case there is no preferred angle of incidence between the microphone and the sound source. When measurements are made on a source in a free field, an angle of incidence of 70 degrees between the axis of the microphone and the sound source will approximate random response.

3.4 AUXILIARY CALIBRATION. The Type 1551-C has an internal calibrating system for quick checks on the electrical circuit of the instrument. This system connects the output of the amplifier to the input through an appropriate attenuator, filter, and limiter to produce a predetermined oscillation amplitude when the amplifier gain is correct. This system checks the electrical operation only and does not check the microphone. To make an acoustical check on the calibration of the instrument, the Type 1562 Acoustic Calibrator is recommended. This is a closed coupler with a driving loudspeaker that produces a known sound pressure level at the microphone.

3.5 METER CIRCUIT. The meter circuit used in the Sound-Level Meter, while not a true rms indicator, indicates much more closely to the rms value than have meters in earlier instruments. The meter circuit combines an average-reading circuit with a peak-reading circuit to create a "quasi-rms" indicating circuit. Since the rms value of most waveforms falls above the average value but below the peak value, a portion of the peak indication added to the average value of a given waveform should result in an rms indication. The meter circuit is designed to approximate rms values for various types of waveforms.

Table 2 below shows the db difference between the indication of a true rms meter and that of the Type 1551-C Sound-Level Meter for several test signals. In the column headed "db Fluctuation etc" the signal consists of two tones, one at 1000 cps set for a convenient meter indication. The other tone is within a few cycles of 3000 cps and has 30 percent of the amplitude of the first. A true rms meter will show no fluctuation with this type of signal. The column headed "For Two-Signal Addition" refers to the two-signal test outlined in ASA Standard Z24.3-1944.

With pulses of constant height but varying length, the Type 1551-C Sound-Level Meter indicates the rms value within ± 1 db until the pulse duration becomes as short as 1/25 that of a square wave.

		Difference in	Meter Indicati Decibels	on and RMS
Type Meter	db Fluctuation with Phose Changes at 30% 3rd Harmonic	For Two-Signal Addition	For Square Waves	For Noise
1551-C	0.45	+.05	+0.1	0.25

TABLE 2.

Section 4 SERVICE AND MAINTENANCE

4.1 GENERAL. We warrant that each new instrument manufactured and sold by us is free from defects in material and workmanship, and that, properly used, it will perform in full accordance with applicable specifications for a period of two years after original shipment. Any instrument or component that is found within the two-year period not to meet these standards after examination by our factory, Sales Engineering Office, or authorized repair agency personnel, will be repaired, or, at our option, replaced without charge, except for tubes or batteries that have given normal service.

The two-year warranty stated above attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instructions, please write or phone our Service Department (see rear cover), giving full information of the trouble and of steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest Sales Engineering Office, requesting a Returned Material Tag. Use of this tag will ensure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.

4.2 REMOVAL OF INSTRUMENT FROM CABINET. To remove the instrument from its cabinet, remove the two large black screws from the bottom of the cabinet and lift the cover off.

4.3 TUBE FAILURE. As tubes age, one or more of them may become open-circuited. Check the filament resistance with an ohmmeter between pins 3 and 5 of the tube base (see Figure 8). Make sure that the ohmmeter current through the filaments is less than 10 ma.

4.4 TUBE REPLACEMENT. For access to tubes, remove the two Phillipshead screws that attach the cover of the amplifier compartment, and lift off the cover. The tubes are held in place between rubber pads on the amplifier shelf and on the inside of the cover.

When replacing a tube, cut the leads on the new tube to between 5/16 and 3/8 inch before inserting the tube in the socket. Install the tube so that the red dot on the tube base is on the same side as that on the socket.

4.5 BATTERY REPLACEMENT. To replace any of the batteries, remove the black screw that secures the holding bracket. (See Figure 9.) After the bracket is removed, the batteries can be withdrawn and replaced. Observe proper polarity as marked, when replacing batteries.

4.6 REPLACEMENT OF BIAS CELL. For access to the bias cell, remove the two studs and washers from the ends of the amplifier etchedcircuit board. Pivot the amplifier shelf upward to expose the bias cell. To remove the bias cell, first pull the contacting clip sideways and away from the bias cell. The bias cell can then be unscrewed and replaced. When returning the amplifier shelf to its original position, be careful that all wires are free and that none will be pinched between shield and chassis.

4.7 SOLDERING OF CONNECTIONS TO CABLE WIRES. The plastic insulation on the wires in cables and on many interconnecting leads melts easily, and extreme caution is advised in soldering connections. If the wire is held with pliers near the spot to be soldered, heat will be carried away from the insulation, helping to avoid melted insulation.

4.8 MICROPHONE SENSITIVITY ADJUSTMENT. An internal sensitivity control is adjusted in the General Radio laboratory to match the characteristics of the microphone sent with each meter. If a microphone with a different sensitivity is substituted for that furnished, set this adjustment (see Figure 9) to indicate the new microphone sensitivity. Also, a check of acoustical calibration should be made by the method outlined in paragraph 2.1.3.

4.9 INTERNAL NOISE. Internal noise should not normally affect readings with the attenuator switch set at 40 or higher. If desired, the following procedure can be used to determine how much noise is generated in the instrument. Remove the microphone, and connect a 380-pf capacitor across terminals 1 and 3 of the microphone socket. This capacitor and its connecting leads must be completely shielded in a metal can connected to either the metal part of the microphone socket or to terminal 1, which is grounded. The connection is identical to that shown in Figure 7, except that a short circuit replaces the oscillator.

Figure 7. Circuit for Calibrating Amplifier Gain.

Be certain that there is no external pickup of any stray fields. The meter on the instrument should not read above -6 with the attenuator

switch set at 30, the WEIGHTING switch at C, and the METER BATTER-IES switch at FAST.

Internal noise can be caused by the bias cell, B50, or by the batteries. Tube noise is generally caused only by V50 or V52, which can be interchanged with V51 or V53 or replaced if less noise is required. It may be necessary to try several tubes to achieve a satisfactory reduction in noise. Typical noise levels arc given in the following table.

1551-C Attenuator	All Pass			NOISI OCTA	E LEV	ELS - d ND - c	lb ps				
Setting db	20 cps - 20 kc	31.5	63	125	250	500	1000	2000	4000	8000	16000
30	17	25	26	28	30	30	30	28	26	27	29
40	27	35	36	38	40	41	40	38	36	37	39
50	37	45	46	48	50	51	50	48	46	47	- 48
60	46	55	56	58	60	61	60	58	56	56	57
70	52	64	64	67	68	68	67	65	63	62	59
80	54	73	73	74	74	73	71	68	65	63	60
90	55	78	77	77	75	73	71	68	66	63	60
100	55	80	78	78	76	74	71	68	66	63	60
110	54	79	76	76	73	71	69	67	65	63	60
120	55	80	78	78	76	74	71	68	66	63	60
130	55	79	76	77	75	73	70	68	66	63	60
140	55	80	77	78	76	74	71	68	66	63	60

TYPICAL INTERNAL SIGNAL-TO-NOISE RATIOS C WEIGHTING (db BELOW FULL SCALE - SET FOR -60 db MICROPHONE)

4.10 AMPLIFIER GAIN. With the Sound-Level Meter set for normal operation with C weighting, apply a 1.0-volt, 400- or 1000-cycle signal to the microphone socket through a shielded 380-pf capacitor, as shown in Figure 7. The meter reading should agree with that given below for the sensitivity of the microphone used. (Microphone sensitivity is listed at the front of this manual, as well as on a label inside the instrument.)

1560-P3 (98108) Microphone Sensitivity db re 1 volt/µbar	Type 1551-C reading
-62	136
-61	135
-60	134
-59	133
-58	132
-57	131

4.11 TEST VOLTAGES AND RESISTANCES. The table on the following page lists dc voltages and resistances between tube and transistor pins and ground, as measured with a vacuum-tube voltmeter. For voltage measurements, set the attenuator to 130 CAL, the WEIGHTING switch to A, and the METER-BATTERIES switch to FAST. For resistance measurements, remove batteries and ground terminals 2, 3, and 4 of socket S02.

TUBE (TYPE)	PIN	FUNC- TION	- VOLTS DC BTRY 1262-B		RES TO GND
V50 (CK512AX)	1 2 3 4 5	P S C G C	15.0 15.0 0.71 -1.40 0	15.5 15.5 0.7 -1.41 0	890 k 890 k 16 * 0
V51 (CK512AX)	1 2 3 4 5	P S C G C	16.0 14.1 1.45 0 0.72	16.1 14.2 1.41 0 0.71	320 k 940 k 0 1 M 16
V52 (CK512AX)	1 2 3 4 5	P S C G C	9.4 9.4 0.76 -0.48 0	9.1 9.1 0.76 -0.48 0	850 k 850 k 16 18 M 0
V53 (CK512AX)	1 2 3 4 5	P S C G C	21.5 14.9 1.44 0 0.76	20.5 14.3 1.4 0 0.73	340 k 1.21 M 0 18 M 16
V54 (CK6418)	1 2 3 4 5	P S C G C	17.2 17.6 1.48 -0.35 0	16.3 17.0 1.42 -0.35 0	123 k 400 k 0 18 M 0
V55 (CK6418)	1 2 3 4 5	P S C G C	14.5 21.5 1.47 -0.22 0	13.9 20.7 1.37 -0.22 0	100 k 270 k 0 18 M 0
TR1 (2N1372)	1 2 3	E B C	14.3 14.2 0	13.0 12.9 0	30 k 96 k 0
RX51 S02	К 4		40. 2 65. 0	39.7 59	

TABLE OF VOLTAGES AND RESISTANCES.

*Do not attempt to measure (bias cell in circuit).

	F	PARTS LIST	ſ		
Ref. No.	Description	GR Part No.	Fed, Mfg. Code	Mfg, Part No.	Fed. Stock No.
CAPACITO	DRS				
C2	Mica, 330 pF ±2% 500 V	4690-3200	00656	CM20E, 300 pF ±2%	5005-858-4040
C3	Trimmer. $7 = 45 \text{ pF}$	4910-0100	24035 72982	TSAN300 7-45 pF	5905-656-4049
C4	Mica, 30 pF ±2% 500 V	4690-0400	00656	CM20E, 30 $pF \pm 2\%$	0,10 1,7 ,2,0
C5	Mica, 90.0 pF ±2% 500 V	4690-1201	00656	CM20E, 90.9 pF ±2%	
C7	Plastic, 0.0033 μ F ±2% 200 V	4860-7350	84411	663UW, 0.0033 μF ±2%	
C8 C9	Mica, 178 pF $\pm 2\%$ 500 V	4690-2217	00656	CM20E, 178 pF $\pm 2\%$	
C10	Plastic, $0.0332 \mu\text{F} \pm 2\% 100 \text{ V}$	4090-2217	00050 84411	663UW 0.0332 HF ±2%	
C11	Mica, 220 pF ±2% 500 V	4690-2700	00656	CM20E221G	5910-931-4153
C12	Wax, 0.47 µF ±10% 100 V	5010-3600	80183	78P4741S3	5910-448-5765
C13	Electrolytic, 60 µF 25 V	4450-2900	56289	D17872	5910-799-9280
C15 C16	Ceramic, 12 pF ±5% 500 V (NPO) Mice 35 pE ±2% 500 V	4400-3200	00656	Type CL-1, 12 pF ±5%	5910-705-6442
C19	Mica, $0.001 \ \mu\text{F} \pm 5\% \ 500 \ \text{V}$	4580-0100	14655	5A. 0.001 $\mu F \pm 5\%$	5910-052-7016
C20	Mica, 0.001 μF ±5% 500 V	4580-0100	14655	5A, 0.001 μ F ±5%	5910-052-7016
C21	Mica, 0.0012 μF ±5% 500 V	4580 -020 0	14655	5A, 0.002 μF ±5%	
C22	Mica, 0.001 μ F ±5% 500 V	4580 - 0100	14655	5A, 0.001 µF ±5%	5910-052-7016
C23 C50	$M_{NN} = 0.1 \text{ uF} \pm 10\% 100 \text{ V}$	4860-7319	54411	003UW, U.UU158 μF ±1%	5010-448-5758
C51	Wax, 1 μ F ±10% 100 V	5010-2700	80183	78P10571S3	5910-615-5255
C52	Electrolytic, 50 µF 50 V	4450-2200	80183	50 μF +100-10%	5910-799-9283
C53	Wax, 0.22 µF ±10% 100 V	5010-3300	80183	78P22411S3	5910-448-5777
C54	Wax, 0.1 µF ±10% 100 V	5010-2700	56289	78P10491S3	5910-448-5758
C55	Wax, 0.22 µF ±10% 100 V	5010-3300	80183	78P22411S3	5910-448-5777
C57	Electrolytic, $30 \mu\text{F}$ 100 V	5010-3300	37042	78P2241153 95947C7523C10X3	5910-440-5777
C58	Wax, 0.01 µF ±10% 100 V	5010-1600	80183	78P1031S3	5910-448-5788
C59	Wax, 0.1 µF ±10% 100 V	5010-2700	56289	78P10491S3	5910-448-5758
C60	Wax, 0.1 µF ±10% 100 V	5010-2700	56289	78P10491S3	5910-448-5758
C61 C61	Wax, 0.01 µF ±10% 100 V	5010-1600	80183	78P1031S3	5910-448-5788
C63	Wax, $0.22 \ \mu F \pm 10\% \ 100 \ V$	5010-3300	80183	78P474153 78P474153	5910-448-5765
C64	Plastic, 0.0606 μ F ±2% 100 V	4860-8213	84411	$663UW, 0.0606 \mu F \pm 2\%$	0,10 110 0,00
C65	Wax, 1 µF ±10% 100 V	5010-3700	80183	78P10571S3	5910-615-5255
C66	Wax, 0.047 μF ±10% 100 V	5010-2100	56289	78P4731S3	
C67	Wax, $0.47 \mu\text{F} \pm 10\% 100 \text{V}$	5010-3600	80183	78P4741S3	5910-448-5765
C69	Wax, $0.47 \ \mu\text{F} \pm 10\% 100 \ \text{V}$	5010-3600	80183	78P474153 78P474153	5910-446-5765
C70	Electrolytic, 16 uF 150 V	4450-0200	37942	D33104	5910-829-3313
C71	Ceramic, 3.3 pF ±10% 500 V	4400-0400	78488	GA, 3.3 pF ±10%	5910-708-5197
RESISTO	RS				
R1	Film, 22.9 MΩ ±1% 1 W	6182-5229	03888	PT1000, 22.9 MΩ ±1%	
RZ D2	Film, 2.17 MW $\pm 1\%$ 1/2 W	6450-4217	75042	CEC, 2.17 M $\Omega \pm 1\%$	
R4	Film, 1.0 M Ω ±1% 1/8 W	6250-3333	75042	CEA. 1 MQ $\pm 1\%$	5905-646-5678
R5	Film, 659 kΩ ±1% 1/8 W	6250-3659	75042	CEA, 659 k $\Omega \pm 1\%$	
R6	Film, 73.2 k $\Omega \pm 1\% 1/8$ W	6250 - 2732	75042	CEA, 73.2 kΩ ±1%	5905-655-1982
R7	Film, 500 k Ω ±1% 1/8 W	6250-3500	75042	CEA, 500 k Ω ±1%	5905-783-8446
R8 P0	Film, $159 \text{ k}\Omega \pm 1\% 1/8 \text{ W}$	6250~3159	75042	CEA, 159 k $\Omega \pm 1\%$	
RIO	Film, 50 k Ω ±1% 1/8 W	6250-2500	75042	CEA, 50 kΩ $\pm 1\%$	
RII	Film, 154 k $\Omega \pm 1\%$ 1/8 W	6250-3154	75042	CEA, 154 k Ω ±1%	
R12	Film, 15.9 kΩ ±1% 1/8 W	6250-2159	75042	CEA, 15.9 kΩ ±1%	
R13	Film, 169 k Ω ±1% 1/8 W	6250-3169	75042	CEA, 169 k $\Omega \pm 1\%$	5905-892-6921
R14 R15	Film, 7.32 KW #1% 1/8 W Film, 63 3 kO +1% 1/9 W	6250-1732	75042	UEA, 7.32 KΩ $\pm 1\%$	5905-578-0994
R16	Film, 216 k Ω ±1% 1/8 W	6250-3216	75042	CEA, 216 k0 $\pm 1\%$	
R17	Film, 100 k $\Omega \pm 1\%$ 1/8 W	6250-3100	75042	CEA, 100 k $\Omega \pm 1\%$	5905-577-6743
R18	Composition, 100 k Ω ±5% 1/2 W	6100-4105	01121	RC20GF104J	5905~195~6761
K20	Composition, 110 k Ω ±5% 1/2 W	6100-4115	01121	RC20GF114J	5905-279-1867
R23	Composition, $75 \text{ KM} \pm 5\% 1/2 \text{ W}$	0100-3755 6100-4625	01121	RC20GE/53] RC20GE6241	5905-279-3495
R24	Composition, $3 k\Omega \pm 5\% 1/2 W$	6100-2305	01121	RC20GF3024J	5905-279-1751
R25	Composition, 11 kΩ ±5% 1/2 W	6100-3115	01121	RC20GF113]	5905-279-2667
R26	Composition, $3 k\Omega \pm 5\% 1/2 W$	6100-2305	01121	RC20GF302J	5905-279-1751
K27	Composition, $3 k\Omega \pm 5\% 1/2 W$	6100-2305	01121	RC20GF302J	5905-279-1751
n20 R29	Film, 10.9 KW =1% 1/2 W Film, 16.9 k0 ±1% 1/2 W	6250-2169	75042	UEA, 10.9 KΩ $\pm 1\%$	5905-806-8487
R30	Composition, 820 k $\Omega \pm 5\%$ 1/2 W	6100-4825	01121	CEA, 10.7 KW ±1% RC20GF8241	5905-221-58487
R31	Composition, 20 k Ω ±5% 1/2 W	6100-3205	01121	RC20GF2031	5905-192-0649
R32	Composition, $43 \text{ k}\Omega \pm 5\% 1/2 \text{ W}$	6100-3435	01121	RC20GF433]	5905-279-3498
R33	Composition, 24 k Ω ±5% 1/2 W	6100-3245	01121	RC20GF243J	5905-279-1878
K34 R35	Potentiometer, composition 50 k $\Omega \pm 10\%$	6010-1400	01121	JU, 50 k Ω ±10%	5905-055-3046
R36	Composition, 330 KW $\pm 5\%$ 1/2 W	6100-2245	01121	KC2UGF334J RC20CE2431	5905-279-2519
R37	Composition, 51 k Ω ±5% 1/2 W	6100-3243	01121	RC20GF243J	5905-279-3496
R38	Potentiometer, composition 100 k $\Omega \pm 10\%$	6010-1700	01121	$[U, 100 \ k\Omega \pm 1\%]$	5905-797-1054
R39	Potentiometer, composition 100 k $\Omega \pm 20\%$	6040-1000	01121	FWC, 100 k $\Omega \pm 20\%$	5905-958-7949
R40	Composition, 1.0 MΩ ±5% 1/2 W	6100-5105	01121	RC20GF105J	15905-192-0390

	PAR	TS LIST (Con	t)		
Ref. No.	Description	GR Part No.	Fed. Mfg. Code	Mfg, Part No.	Fed. Stock No.
RESISTOR	IS (Cont)	(100 1/05	~		5005 050 0510
*K50 R51	Composition, 430 kM $\pm 5\%$ 1/2 W	6100-4435	01121	RC20GF434J	5905-279-2518
R51 R50	Composition, 110 KM $\pm 5\%$ 1/2 W	6100-4115	01121	RC20GF114J	5905-279-1807
K52 D52	$F_{11}m$, $I_{MM} = 1\% I/8 W$	0250-4100	75042	CEA, $IM\Omega \pm I\%$	5905-040-5070
R55 DE4	Composition, 910 KM $\pm 5\%$ 1/2 W	0100-4915	01121	RC20GF914J	5905-221-5053 5005 171 1009
R54 DFE	E_{1} 200 k0 ±10 1/2 W	0100-3335	01121	RC20GF333J	5905-1/1-1990
R33 *DE4	C_{11111} , 270 KM -1% 1/8 W	6250-5250	75042	CEA, 290 KM ±1%	F00F-270-2502
* 057	Composition, 10 MM $\pm 5\%$ 1/2 W	6100-6185	01121	RC20GF180J	5905-279-2303
DEO	Composition, 750 kM $\pm 5\%$ 1/2 W	6100-4/55	01121	RC20GF754j	5905-279-1757 5005-105-4741
N30 D50	Composition, 100 kM $\pm 5\%$ 1/2 w	6100-4105	01121	RC20GF104j	5905-195-0701
*P40	Composition, 18 Ma $\pm 5\%$ 1/2 W	6100-0185	01121	RC20GF100j	5905-279-2303 5005-171-2000
R00 P61	Composition 1.2 MO ±5% 1/2 W	6100-4065	01121	RC20GF004j	5905-190-2000
R61	Composition, 1.2 Miz $\pm 5\%$ 1/2 W	6100-4225	01121	RC20GF125j	5905-190-0874
R02 D62	Composition, 19 MO $\pm 6\%$ 1/2 W	6100-4333	01121	RC20GF434j	5005-279-2510
R03	Composition, 10 $W12 \pm 5\% 1/2 W$	6100-0105	01121	RC20GF100j	5905-279-2505
* 0 4 5	Composition, $390 \text{ KM} \pm 5\% 1/2 \text{ W}$	6100-4395	01121	RC20GF394J	5905-279-2517 ED05-270-1847
P66	Potentionator accuracition 2 5 10 4100	6040-1700	01121	RC20GF114J	3903-279-1007
K00 *D47	Composition 200 O ±50 1/2 W	6100-1205	01121	PC20CE2011	5005-270-5491
-R07	Composition, $300.42\pm5\%$ 1/2 W	0100-1305	01121	RC20GF301J	5905-479-5461
R00	Composition, 10 KM $\pm 3\%$ 1/2 W	6100-6105	01121	RC20GF103J	5905-103-0510
R09	Composition, 220 KM $\pm 5\%$ 1/2 W	6100-4225	01121	RG20GF224j	5905-192-0007
R/U D71	Composition, 18 MM ±5% 1/2 W	6100-6185	01121	RC20GF100j	5905-279-2503
R/1 D70	Composition, 2.4 MM 25% 1/2 W	6100-5245	01121	RC20GF245J	5905-279-2512
R72 R72	Composition, $300 \text{ kM} \pm 5\% 1/2 \text{ W}$	6100-4305	01121	RC20GF304j	5905-103-0039
R/3 P/74	Composition, 100 kM $\pm 5\%$ 1/2 W	6100-4105	01121	RC20GF104J	5905-195-0701
R/4 D75	Composition, $120 \text{ k} = 5\% 1/2 \text{ W}$	6100-4125	01121	RC20GF124j	5905-192-3901
R/5 D74	Composition, $470 \text{ KM} \pm 5\% 1/2 \text{ W}$	0100-44/5	01121	RC20GF4/4J	5905-279-2515
R/0	Composition, 10 kM $\pm 5\%$ 1/2 W	6100-5105	01121	RC20GF103J	5905-105-0510 F005 102 0640
1.77	Composition, 20 KM 15% 1/2 W	0100-3203	01121	KC20G1-203J	3703 172 0047
MISCELLA	ANEOUS				
BI	Battery, 1-1/2 V Type D cell	8410 -0 200	77542	21.P	
B2	Battery, 1-1/2 V Type D cell	8410 -0 200	77542	2LP	
B3	Battery, 67-1/2 V	8410-2300	09823	XX45	
B50	Battery, 1-1/2 V	4020-0100	90303	BC4	
D1	Diode, type 1N34A (S)	6082-1003	82389	#111	
D2	Diode, type 1N34A (S)	6082-1003	40931	MEDS-105	6625-708-5186
D3	Diode, type 1N34A (S)	6082-1003	71785	P-302-AB	
D4	Diode, type 1N34 A (S)	6082 - 1003	58854	IN34A(S)	5961-170-4430
D5	Diode, type 1N645	6082-1016	58854	IN34A(S)	5961-170-4430
D6	Diode, type 1N645	6082-1016	58854	IN34A(S)	5961-170-4430
JI	Jack	4260-1500	58854	IN34A(S)	5961-170-4430
MI	Meter, 100 µa dc	5730-1050	24446	IN645	5961-944-8222
PLI	Plug		24446	IN645	5961-944-8222
QI	Transistor, type 2N1372	8210-1372	86800	IN976B	5960-854-8469
RX51	Diode, type 1N967B	6 0 83 -1 020	76854	179901-H4C	
SI	Switch	7890-1600	76854	179901-H4C	
52	Switch	7890-1600	24655	/890-1530	5930-708-5199
53	Switch	/890-1530	24655	1551-0450	5930-708-5198
54	Switch, DPS I	1551-0450	24655	4230-2840	
SOI	Socket	4230-2840	71785	5-306-AB	
502	Socket	4230-3500	01295	ZIN1372	50/0 501 0-2-
V 50	1 we	8370-1400	94144	UK512AX	5960-581-9593
V51	LUDC The back	8370-1400	94144	CK512AX	5960-581-9593
V52	1 uDe	8370-1400	94144	UK512AX	5960-581-9593
1754	1 upe	8370-1400	94144	CK51ZAX	5960-581-9593
V54 V55	Tube	8380-6418	94144	CK0418	5960-537-3967
V 22	Tube	8380-6418	94144	CK0418	5960-537-3967

*Must be Allen-Bradley.

MECHANICAL PARTS LIST

Fig. 8 Ref.	Name	Description	GR Part No.	Fed. Mfg. Code	Mfg, Part No.	Fed. Stk. No.
1	Microphone	Piezoelectric-Ceramic	1560-9605	24655	1560-9605	
2	Knob Asm.	Knob, attenuator; includes				
		bushing 4140-0300	5530-1200	24655	5530-1200	5355-926-5196
3	Knob Asm.	Knob, WEIGHTING; includes				
		bushing 4140-0300	5500-0400	24655	5500-0400	5355-051-6594
4	Thumbset	CAL control	5540-2500	24655	5540-2500	
5	Support	Black rubber	5260-1600	24655	5260-1600	
6	Knob Asm.	Knob, METER/Batteries;				
		includes bushing 4140-0300	5500-0400	24655	5500-0400	5355-051-6594
7	Meter Cover*	ME3-701 Cover; Dark Gray Mask	5720-3712	24655	5720-3712	
8	Foot	Block rubber	5250-1902	24655	5250-1902	
(Hidde	m)					
9	Handle	Leather strap handle	1551-0460	24655	1551-0460	
		•				

*When ordering, please specify manufactured by Weston or Honeywell.

滋 漁 Allenia Allenia , T 1468-181 - 394 46-14 10 miles ŝ. 2008 14**11** 22 282 9-940 2-825 9-825 9-825 9-825 Ŷ and a 22. तत्वी 🕷 dif Samit 2374 2374 989 87

Planet R. Externel received and sorts of fee. Second income there.

> The second state of the second states and states for more could be the states. The Second states of the could states are states at the states. This result must be a loss of states states at the states of the states in the second states at the states of the states of the states and states at the states of the states in the states and states are stated at the state of the states are stated at the states at the state of the states are states and states are stated at the states at the states are stated at the state of the states at the states at the states at the states of the states at the states at the states at the states of the states at the states at the states at the states of the states at the states at the states at the states of the states at the states at the states at the states of the states at the states at the states at the states of the states at the states a

Type: 3. Sciences Constant, Type: MistaC Soundal event Names,

Rotary switch sections are shown as viewed from the panel end of the shaft. The first digit of the contact number refers to the section. The section neorest the panel is 1, the next section bock is 2, etc. The next two digits refer to the contact. Contact 01 is the first position clockwise from o strut screw (usu-ally the screw obove the locating key), and the other contocts are numbered sequentially (02, 03, 04, etc), proceeding clockwise around the section. A suffix F or R indicates that the contact is on the front or rear of the section, respectively.

NOTE

- RESISTORS 1/2 WATT UNLESS OTHERWISE SPE RESISTANCE IN OHMS UNLESS OTHERWISE . K=1000 OHMS M=1 MEGOHM
- CAPACITANCE VALUES ONE & OVER IN MICRO LESS THAN ONE IN MICROFARADS UNLE OTHERWISE NOTED.
- SCREW DRIVER ADJUSTMENT PANEL CONTROL 0

NOTE:

RESISTORS 1/2 WATT UNLESS OTHERWISE SPECIFIED RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED K=1000 OHMS M=1 MEGOHM

- CAPACITANCE VALUES ONE & OVER IN MICRO[®] MICROFARAOS, LESS THAN ONE IN MICROFARADS UNLESS OTHERWISE NOTED.
- SCREW DRIVER ADJUSTMENT PANEL CONTROL 00

Figure 9. Schemati Type 1551-C Sound-L

Figure 9. Schematic Diagram, Type 1551-C Sound-Level Meter.

Factor III. Interior State, Yota UNI-E Shandrich of Matter

Figure 11. Companyet Copert on Excludibrard. Complete boord in 1974 1000-2015

NEW The mean we prove that the state of the property proves the state of the state of

38

Section 5 TYPE 1262-B POWER SUPPLY

5.1 DESTRICLATION. Referen subspites Cype 1260-5 Prover Supply, re-movemble latitucies from the format-formal Materia forfait to paragraph 4.33, and replace the found -terrel Materia in the case.
To annuch the prover supply to the Scord-Level Meter, it is associative to the sound terrel Materia in the sound region. This is associated to the sound terrel Materia in the intervent for the sound terrel Materia.
The sound terrel institute for the intervent english wheat the proven supply the terrel Materia.
The sound terrel institute for the intervent english wheat the format terrel Materia.
The sound terrel institute for the intervent english wheat the format terrel Materia.
Annual Materia institute terrel basers and the sound terrel for the sound terrel Materia.
The sound terrel institute terrel basers and terrel for the sound terrel Materia.
Annual Materia institute terrel basers.
Annual Materia institute terrel basers and terrel basers and the sound terrel Materia.
Annual Materia institute terrel basers.
Annual Materia institute terrel basers and terrel basers.
Annual Materia institute terrel basers and terrel basers and terrel basers.
Annual Materia institute terrel basers and terrel basers.</p

1.3. GENERATION: Communication Transmission (Comparison of the Comparison of the

3.3 SERVICE AND MAINTENANCE. Ester to paragraph 4.4,

4.4 MORSE LEVEN. The internal conservers of the Subard-Lords Lister dependent on the question of the second sec

If the finite-Lovid Metter is opposited in an area where the line-versing thermore sharpship and repositedly for most devices excitate spec-mediate d₁ the internal sense level will appear to be bighter then the releven lighted sharps.

R75

BLOCK

Section 5

TYPE 1262-B POWER SUPPLY

5.1 INSTALLATION. Before using the Type 1262-B Power Supply, remove the batteries from the Sound-Level Meter (refer to paragraph 4.5), and replace the Sound-Level Meter in its case.

To attach the power supply to the Sound-Level Meter, it is necessary first to remove the cover from the power supply. To do this, loosen the two 10-32 screws at the ends of the power supply. Then slide the cover off, i.e., away from the engraved panel of the power supply.

Two 1/4-28 binder-head screws are used to attach the power supply to the Sound-Level Meter. Insert these screws through holes in the back of the power supply and mating threaded holes in the Sound-Level Meter. The six-terminal male connector in the power supply should slip into the receptacle on the Sound-Level Meter.

5.2 OPERATION. Connect the Type 1262-B input plug to a 105-125 (or 210-250) -volt, 50-60-cycle power source. Turn the Power Supply and Sound-Level Meter on by means of the power supply on-off switch. (The Sound-Level Meter's on-off switch functions only when the instrument is battery-operated.) To check for proper operation, set the METER-BATTERIES switch to PL and FIL, checking that for each position the meter pointer falls within the white BAT area on the meter face.

5.3 SERVICE AND MAINTENANCE. Refer to paragraph 4.1.

5.4 NOISE LEVEL. The internal noise level of the Sound-Level Meter depends on the quality of the power line supplying the Type 1262-B Power Supply. With a good line (i.e., no transient humps or frequency components below 50 cps), the noise level will be 28 db or less for the 20-kc weighting position, below 26 db with C weighting, and below 24 db with A or B weighting.

If the Sound-Level Meter is operated in an area where the line voltage fluctuates abruptly and repeatedly (e.g. near devices such as spot welders), the internal noise level will appear to be higher than the values listed above.

Figure 13. Schematic Degree, Type 1262-8 Power Supply.

Tι

		GR	Fed, Mfg.		Fed. Stock
LEF, NO, CARACIT	Description	Part No.	Code	Mfg. Part No.	No.
CLA	013				
CIR	Electrolytic, 300 µF 35 V	4450-2400	37942	2021149S4C10X1	5910-822-2691
C2A	1200				
C2B	Electrolytic, 2400 µF 15 V	4450-4200	37942	20-21339-99-6	
C2C	1200				
C3A	200				
C3B	Electrolytic block, 100 µF 100 V	4460-1500	80183	DFP, 200/100/100 µF	5910-822-2692
C3C	100				
C4A	Electrolytic, 300 µF 35 V	4450-2400	37942	2021149S4C10X1	5910-822-2691
C4B					
PILOT LA	MP				
P 1	115 V	8390-0600	24446	NE-51	6240-223-9100
RESISTO	RS				
R1	Composition, 100 k Ω ±5% 1/2 W	6100-4105	01121	RC20GF104J	5905-195-6761
R2	Composition, 200 $\Omega \pm 5\% 1/2$ W	6100-1205	01121	RC20GF201J	5905-279-2674
R3	Composition, 130 $\Omega \pm 5\% 1/2$ W	6100-1135	01121	RC20GF131J	5905-252-5436
R4	Composition, 43 Ω ±5% 1/2 W	6100-0435	01121	RC20GF430J	5905-279-1887
R5	Composition, 47 Ω ±5% 1/2 W	6100-0475	01121	RC20GF470J	5905-252-4018
R6	Composition, 180 Ω ±5% 1/2 W	6100-1185	01121	RC20GF181J	5905-279-3514
R7	Composition, 1.5 k Ω ±5% 1/2 W	6100-2155	01121	RC20GF152J	5905-841-7461
R8	Composition, 1.5 k Ω ±5% 1/2 W	6100-2155	01121	RC20GF152J	5905-841-7461
R9	Composition, 51 kΩ ±5% 1/2 W	6100-3515	01121	RC20GF5131	5905-279-3496
R10	Composition, 220 Ω ±5% 1/2 W	6100-1225	01121	RC20GF221	5905-279-3513
R11	Composition, 430 Ω ±5% 1/2 W	6100-1435	01121	RC20GF431J	5905-279-3512
RECTIFIE	RS				
RX1		6080-2800	77638	219	
RX2		6080-2700	77638	6VI	
RX3		6080-2900	77638	612	
RX4		6080-2500	77638	IVI	
RX5		6080-2600	77638	3YI	
SWITCH					
SI	Toggle	7910-1300	04009	83053-SA	5930-909-2510
		1210 1300	51007	00000 041	0100 202 3310

0746-4310 24655 0746-4310

1262-B PARTS LIST

Figure 13. Schematic Diagrom, Type

Figure 14. Layout of Components on Etched Board.

c Diagram, Type 1262-B Power Supply.

FEDERAL MANUFACTURER'S CODE

From Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) as supplemented through August, 1968.

Manufacture

Code

99800

Code

Code Manufacturer Jones Mfg. Co, Chicago, Illinois Walso E lieutronics, Sorburg, L.I., N.Y. Aeroxo, Corp, New Balford, Mass. Aliem Products Co, Brockhurg, L.I., N.Y. Aeroxo, Corp, New Balford, Mass. Aliem Products Co, Brockhurg, L.I., N.Y. Aeroxo, Corp, Suagerics, Mass. Tarzet Instruments, Inc, Dalas, Texes Ferroscube Corp, Saugerics, N.Y. 12707 Ferwal Lab Inc, Morton Grove, III. Fastex, Das Plaines, III, 60016 GL: Semicon Prod, Syracuse, N.Y. 13201 Grayburne, Yonker, N.Y. 13701 Protein Relation Corp, Server, N. N. Arrow-Hart & Hegeman, Hartford, Corn, 06106 Motorola, Preenia, Arz, 85008 Engré E lieuten, Inc, Washid, Mass, 01800 Digitron Co, Pasedema, Calif. Engle Signal EW, Bills Co), Baroon, Misc. Arrow-Hart & Hegeman, Hartford, Corn, 06106 Motorola, Preenia, Arz, 85008 Engré E lieute, Inc, Washidi, Mass, 01890 Digitron Co, Pasedema, Calif. Arres Semicond, Arlington Hts, III, 60004 Bortonic Corp, Hawtorne, Coll. Fatochild Camera, Mourian View, Calif. Birtche Corp, Hawtorne, Coll. Start East, Inc, Washidi, Mass, 01800 Borg Int, Delevan, Was, 53115 Wart Tomora, G. Geregoton, Mass. 05106 Bodine Electro, Corp, Hawtform, Coll. Start Tomora, G. Geregoton, Mass. 01830 Burges Battary Co, Freeport, III. Start East, Inc, Savitario, N.J. Gerss Comp, V. Hartford, Conn, National Semiconductor, Bartford, Conn, National Semiconductor, Bartford, Conn, National Semiconductor, Mass. 01300 Burges Battary Corp, Hawtford, N.J. Gray Savitari Morg, N.S. Gurton Devices, Tappan, N.Y. 10903 Burges Battary Corp, Hautford, N.J. Gray Savitari, Corp, Hautford, Conn, National Semiconductor, Bartford, Conn, National Semiconductor, Nathford, N.J. Gray Savitari, Corp, Hautford, Conn, Mathema, Savitary Corp, Hautford, Conn, Mathema, Savitar, Savitar, Savitar Gray Mathema, Savitar, Savitar Gray Savitar, Corp, Hautford, Conn, National Semiconductor, Nathford, N.Y. General Instrument Corp, Hautware, Wass, 52230 Stinger Corp, Johi Doy, Saverned, Mass, 502140 Gray Mathema, N.Y. 10320 Gray Davies, Tappan, N.Y. 00434 00656 01121 01295 02114 02660 02768 03508 03888 03911 04009 05170 05624 05820 07126 07127 07263 07387 07595 07626 07829 07910 07983 08730 09213 09408 11236 11599 12498 12672 12697 12954 13327 14433 14655 14674 14936 15238 15605 17771 19396 19644 21335 22753 23342 24446 24454 24455 26806 28520 28959 30874 32001 33173 35929 Constants Co, Mont, 19, Que, P.R. Mallory & Co Inc., Indianepolis, Ind. Martin-Rockwell Corp. Jamestown, N.Y. Honeywell Inc, Minnepolis, Minn, 55408 Muter Co, Chicago, III, 60638 National Co, Inc. Melrose, Mass. 02176 Norme-Hoffman, Stanford, Conn. 06904 38443 40931 42190 42498 43991

RCA, New York, N.Y. 10020
 Raytheon Mg Co. Waitham, Muss. 20154
 Shallerose Mg Co. Santa, N.C.
 Shallerose Mg Co. Santa, N.C.
 Shallerose Mg Co. Santa, N.C.
 Shaytey Eliteric Co. N. J. Advini, Mass.
 Thomas and Betts Co., Elitabein, N.J. 07207
 Thwi Inci, Accessorias Di, Claveland, Oho
 Torington Mg Co., Elitabein, N.J. 07207
 Unitor Carbidic Goro, New York, N.Y. 10017
 Unitor Carbidic Coro, New York, N.Y. 10017
 Helden Mg Co., Chicago, Ill, 6064
 Bromson, Homer D, Co., Bescon Fails, Conn, Carfield, H.O. Co, Clitton Forey, V.J. 24422
 Bustram (McGawe Editon), St., Louis, Mo, 1TT Cannon Elee, L.A., Calif, 30031
 Controll Carbon Co, Inc, New York, N.Y. 10017
 Chicago Minaturu Lamp Works, Chicago, Ill. Gorago, Ill.

Manu facturer Air Filter Corp, Milwaukee, Wisc, 53218 Hammarlund Co, Inc, New York, N.Y. Beckman Instruments, Inc. Yorke, Collit. International Instrument, Carage Conn. Beckman Instruments, Inc. Yorke, Coll. Instructional Instrument, Carage Conn. Solantia Mrw. Mol Corp. Stuffer, N.J. 07960 Millary Specifications Columbus Electronics Corp. Yonkers, N.Y. Filtron Co, Fubing, L.I., Yu, 1135a Ledex Inc, Davion, Ohio 45402 Berry-Wing Toor, Watertown, Mass, Sylvana Electronics Corp. Yonkers, Laford, Ind. Indiana Patterns & Model Works, Laford, Ind. Metals & Controls Inc, Attleborg, Mass. Millawa Patterns & Model Works, Laford, Ind. Metals & Controls Inc, Attleborg, Mass. Millawa Patterns & Model Works, Laford, Ind. Metals & Controls Inc, Attleborg, Mass. Millawa Patterns & Model Works, Laford, Ind. Gener Eatterns Co, Cambridge, Mass. Victory Engineering, Springfield, N.J. 07081 Bearing Special VCo, San Francisco, Calif. Solar Electric Corp. Warren, Penn, Union Caralie Corp. New York, N.Y. 10017 National Electronics Inc, Geneva, III. TAW Capacity Du, Qalala, Nebr. Life Corp. New Rochelle, Ny. 1, 10201 Cont Electronics Corp. Brockivn, N.Y. 11222 Cutter-Hammer Inc, Lincolin, III. Gould Nat, Batterns Inc, Trenton, N.J. Cornell-Dublier, Fuausy York, N.Y. 11222 Cutter-Hammer Inc, Lincolin, III. Gould Nat, Batterns Inc, Trenton, N.J. Cornell-Dublier, Fuausy York, N.Y. 11222 Cutter-Hammer Inc, Lincolin, III. Gould Nat, Batterns Inc, Trenton, N.J. Cornell-Dublier, Fuausy York, N.Y. 11222 Cutter-Hammer Inc, Lincolin, III. Gould Nat, Batterns Inc, Trenton, N.J. Cornell-Dublier, Fuausy York, N.Y. 11031 Contineed Drow Rockelle, N.Y. 1003 Augel Inc, Artleborg, Mass. 20703 Chanadar Co, Nethersfield, Sonn, 06109 Line functioner, Wookide, L.J. N.Y. EG. Gong, Weithersfield, Conn, 06109 Augel Inc, Artleborg, Mass. 20703 Chanadar Co, Weithersfield, Conn, 06109 Augel Inc, Artleborg, Mass. 20703 Chanadar Co, Weithersfield, Conn, 06109 Augel Inc, Artleborg, Mass. 20703 Chanadar Co, Weithersfield, Conn, 06109 Augel Inc, Artleborg, Mass. 20703 Chanadar Co,

9/68

.

Syrgcuse, New York 13211 Telephone 315 454-9323

NEW ENGLAND*

22 Baker Avenue West Concord, Massachusetts 01781 Telephone 617 646-0550

PHILADELPHIA

Fort Washington Industrial Park Fort Washington, Pennsylvania 19034 Telephone 215 646-8030

WASHINGTON* AND BALTIMORE

11420 Rockville Pike Rockville, Maryland 20852 Telephone 301 946 1600

ORLANDO

113 East Colonial Drive Orlando, Florida 32801 Telephene 305 425-4671

* Repair services are available at these district offices.

LOS ANGELES*

1000 North Seward Street Los Angeles, California 90038 Telephone 213 469-6201

AN FRANCISCO

626 San Antonio Road Mountain View, California 94040 Telephone 415 948-8233

DALLAS*

2600 Stemmons Freewoy, Suite 210 * Dallas, Texas 75207 Telephone 214 637-2240

TORONTO*

99 Floral Parkway Toronto 15, Ontorio, Canada Telephone 416 247 2171

MONTREAL

1255 Laird Boulevard Town of Mount Royal, Quebec, Canada Telephone 514 737-3673 OTTAWA Telephone 61 3 233-4237

General Radio Company (Overseas), 8008 Zurich, Switzerland General Radio Company (U.K.) Limited, Bourne End, Buckinghamshire, England **Representatives in Principal Overseas Countries**

Printed in USA