PCS SERIES

High Precision
Manual or SCPI Programmable
Decade Capacitance Substituters
(IEEE-488.2 or RS232)
Operation Manual

Copyright © 2006 IET Labs, Inc.

PCS Series im/Jun 2006
WARNING

OBSERVE ALL SAFETY RULES
WHEN WORKING WITH HIGH VOLTAGES OR LINE VOLTAGES.

Dangerous voltages may be present inside this instrument. Do not open the case
Refer servicing to qualified personnel

HIGH VOLTAGES MAY BE PRESENT AT THE TERMINALS OF THIS INSTRUMENT

WHENEVER HAZARDOUS VOLTAGES (> 45 V) ARE USED, TAKE ALL MEASURES TO
AVOID ACCIDENTAL CONTACT WITH ANY LIVE COMPONENTS.

USE MAXIMUM INSULATION AND MINIMIZE THE USE OF BARE
CONDUCTORS WHEN USING THIS INSTRUMENT.

Use extreme caution when working with bare conductors or bus bars.

WHEN WORKING WITH HIGH VOLTAGES, POST WARNING SIGNS AND
KEEP UNREQUIRED PERSONNEL SAFELY AWAY.

CAUTION

DO NOT APPLY ANY VOLTAGES OR CURRENTS TO THE TERMINALS OF THIS
INSTRUMENT IN EXCESS OF THE MAXIMUM LIMITS INDICATED ON
THE FRONT PANEL OR THE OPERATING GUIDE LABEL.

WARRANTY

We warrant that this product is free from defects in material and workmanship and, when properly used, will
perform in accordance with applicable IET specifications. If within one year after original shipment, it is found
not to meet this standard, it will be repaired or, at the option of IET, replaced at no charge when returned to IET.
Changes in this product not approved by IET or application of voltages or currents greater than those allowed by
the specifications shall void this warranty. IET shall not be liable for any indirect, special, or consequential
damages, even if notice has been given to the possibility of such damages.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE.
CONTENTS

WARRANTY .. iii
WARNING ... iii
CAUTION .. iii
CONTENTS ... iv
FIGURES .. v
TABLES .. v

Chapter 1: INTRODUCTION ... 1

Chapter 2: SPECIFICATIONS ... 3
 2.1 Model Configuration and Specifications .. 3
 2.2 General Specifications .. 4

Chapter 3: OPERATION .. 6
 3.1 Initial inspection and setup ... 6
 3.2 Connection ... 6
 3.2.1 General Considerations ... 6
 3.2.2 Electrical Considerations ... 6
 3.2.3 Four-Wire Kelvin Lead Connections .. 6
 3.2.4 Thermal emf Considerations .. 6
 3.3 Dial Setting ... 7
 3.4 Environmental Conditions ... 7
 3.5 Local Operation ... 7
 3.6 Remote Operation .. 7

Chapter 4: BCD INTERFACE OPTION ... 8
 4.1 BCD Programming ... 8

Chapter 5: IEEE INTERFACE OPTION ... 10
 5.1 Introduction ... 10
 5.2 Capabilities ... 10
 5.3 Address Switch and Communications Settings 10
 5.4 IEEE Option Operation .. 10
 5.5 GPIB Test Keyboard .. 11

Chapter 6: SERIAL INTERFACE OPTION 12
 6.1 Introduction ... 12
 6.2 Capabilities ... 12
 6.3 Signal Interface and Communications Settings 12
 6.4 SERIAL Option Operation ... 12
 6.5 Serial Test Keyboard .. 13
Chapter 7: PROGRAMMING ... 14
7.1 Introduction .. 14
7.2 Command String Structure .. 14
7.3 Advanced Programming - Software Drivers ... 15
 7.3.1 Determining the PZS Configuration .. 15
 7.3.2 Instrument Initialization ... 15
 7.3.3 Source Impedance ... 16

Appendix A .. 17
SCPI Command Reference ... 17

Appendix B .. 19
IEEE-488.2 Common Commands ... 19

Figures
Figure 1.1 PCS High Precision Manual or Programmable Decade Resistance Substituter ... 1
FIGURE 2.1 Typical OPERATING GUIDE Affixed to Unit 5

Tables
Table 4.1 BCD INPUT Connector ... 8
Table 4.2 BCD INPUT Connector Pin Assignments 9
Table 5.1 IEE Bus Address Settings .. 10
Chapter 1

INTRODUCTION

The PCS (Figure 1.1) Series is a broad line of high precision manual and programmable capacitance decade substituters. They provide straight capacitance in a wide selection of ranges, tolerances and ratings. IET Labs also supplies custom combination substituters for capacitance and resistance as well as sources for voltage and current.

The PCS Series is a precision substituter with excellent characteristics of stability, temperature coefficient, and power coefficient. High dynamic ranges are available, starting as low as 1 pF or lower and extending for as many as 10 decades. These features combined with a low virtually constant residual impedance make for very versatile instruments.

The PCS Series features two optional special settings, an “open circuit” and a “short circuit”. These modes are useful for obtaining reproducible transitions between settings, i.e. break-before-make or to short between settings. The “short circuit” setting also provides a reduced zero setting resistance.

Operation is both local using convenient direct reading front panel thumbwheel switches, and remote with optional parallel BCD, RS-232 Serial or IEEE-488 interfaces.

The PCS Series employs very low capacitance relays. High quality gold plated tellurium copper five-way binding posts serve to minimize the thermal emf effects which would artificially reflect a change in dc resistance measurements. All other conductors within the instrument, as well as the solder employed, contain no metals or junctions that could contribute to thermal emf problems.

With low resolutions and high dynamic ranges, the PCS Series may be used for exacting precision measurement applications requiring high accuracy, good stability, and low zero impedance. They are suited for automatic and manual calibration and testing, simulation of programmable loads, and many other laboratory and industrial applications.

The components employed in these substituters are accurate and stable. Low temperature coefficient capacitors are used. Capacitors are selected for best suitability to each decade.

The PCS Series offers an optional digital display to indicate the control command. The unit may be rack mounted to serve as a component in measurement and control systems.
This page is intentionally left blank.
PCS SERIES OPERATING GUIDE

CONSULT INSTRUCTION MANUAL FOR PROPER INSTRUMENT OPERATION

Capacitance Type: Mica for 10 nF steps and under; polycarbonate for 100 nF steps; polyester for 1 µF steps; polarized tantalum for 10 µF steps; polarized electrolytic for 100 µF steps.

Range:
100 pF to 999.999 9 µF in 100 pF steps.

Accuracy:
±(4% + 5 pF); after subtraction of "zero capacitance", at 1 kHz, at 1 Vrms, 5-terminals, at 23°C; traceable to NIST.

Zero Capacitance:
30 pF; 40 pF with rear output option; typical.

Thumbwheel Switch Type: 10 position "0"-"9" in-line switches.

Maximum Load:
100 V for 100 pF through 1µF steps, 20 V for 10 and 100 F steps.

Interface:
IEEE-488.2-1987, SCPI 1994.0; front panel switch selects REMOTE or LOCAL operation; “IDN” for S/N, Model & REV; “CAL:DATE?” for last calibration date.

Terminals:
Gold plated tellurium copper binding posts are provided for HI and LO terminals. One additional binding post, GND, is connected to the case, to chassis ground, and to earth ground.

POWER: 110-125 V, 50-60 Hz; 30 W max.

MODEL: PCS-H-7-100pF-D-IEEE.2

SN: E1-0034306

WARNING

Observe all safety rules when working with high voltages or line voltages.

Electrical Shock Hazard. Do not open case.

Refer servicing to qualified personnel.

FIGURE 2.1 TYPICAL Operating Guide Affixed to Unit
Chapter 3

OPERATION

3.1 Initial inspection and setup

This instrument was tested and carefully inspected before shipment. It should be in proper electrical and mechanical order upon receipt.

An OPERATING GUIDE is attached to the case of the instrument to provide ready reference to specifications.

Mount the unit in a standard 19” rack if the rack mount option is specified.

3.2 Connection

3.2.1 General Considerations

The PCS Series Decade unit is built in 3-terminal or 5-terminal versions. The binding posts are standard laboratory type and readily accept banana plugs, telephone tips, spade lugs, alligator clips, and bare wire. Binding posts are located on the front panel of the instrument unless specifically ordered with a Rear Output option.

The 3-terminal version posts are labeled HI, LO, and GND. The HI and LO terminals are connected to the ends of the internal capacitance being set.

5-terminal models provide four Kelvin terminals consisting of a CURRENT and a SENSE pair, each labeled HI and LO. These minimize contact resistance, and are used on units with high capacitance.

The GND terminal on all models is connected to the case and to earth and chassis grounds. This may be used as a shield terminal.

3.2.2 Electrical Considerations

The performance of the PCS is directly affected by the quality of the connection to the system under test. This is particularly true with the precision series models having higher-accuracy and/or lower-impedance decades.

For optimum performance, contact resistance should be kept to a minimum by using the most substantial mating connection possible, and by assuring that the connection is well secured to the binding posts.

3.2.3 Four-Wire Kelvin Lead Connections

4-wire Kelvin leads minimize the effects of contact resistance and approach ideal performance. The CURRENT and SENSE HI/LO terminal pairs may be shorted together to provide a 2-terminal connection in instances where high accuracy is not a concern.

3.2.4 Thermal emf Considerations

Thermal emf is not usually a concern for capacitance, since measurements are commonly made at ac. It is importance at dc, in particular, for resistance.

The PCS Series uses high-quality, low-emf components. Thermal emf is primarily attributable to the temperature difference between the leads of the relay
and the contacts when power is applied to the coil.

This emf will not be reflected if an ac measurement instrument is employed.

3.3 Dial Setting

Each decade is manually controlled via a front panel thumbwheel that provides positions for “0” through “9”. The total impedance is set/read directly from the dial setting. The decimal point, if any, is marked on the thumbwheel switches, and the steps are clearly marked on the panel. Short Circuit/Open Circuit mode control is only available using a Remote control option.

3.4 Environmental Conditions

The PCS is built, calibrated and intended for use in a laboratory environment with a nominal ambient temperature near 23°C. The accuracy of the unit may be affected when operated in non-laboratory environments. Always allow the instrument to stabilize at room temperature after unpacking or relocating the instrument. Humidity should be maintained at laboratory conditions.

3.5 Local Operation

Operation of the PCS substituter is straightforward and graphically represented on the front panel.

1. Turn on the **POWER** switch. The **POWER** indicator lamp, if present, should come on. If a REMOTE option is present, the **READY** and **LOCAL** indicators should illuminate.

2. Set the **REMOTE/LOCAL** switch to **LOCAL**.

3. Connect any desired instrumentation to the front panel binding posts. The **GND** terminal may be connected to the ground of external equipment. The **GND** terminal is connected to the case and to both chassis and earth grounds.

4. Make 4-terminal or 2-terminal connections as described previously. A shielded set of cables is recommended whenever ac operation or high resistance are involved.

5. Although the unit is ready to operate immediately, it is best to allow it to warm up for one hour to reach maximum stability.

6. Set the thumbwheel switches to provide the desired impedance in the units indicated on the front panel.

3.6 Remote Operation

The PCS includes a **REMOTE/LOCAL** switch on the front panel. The **REMOTE** position is a remote enable. When in **LOCAL** mode, the PCS supplies the impedance value selected using the front panel thumbwheel switches.

When the switch is in the **REMOTE** position, the PCS will supply the configured remote impedance value only if that option asserts remote control. If the option does not assert control, the front panel thumbwheel impedance value is supplied. The **REMOTE** and **LOCAL LED**s always indicate which interface is controlling the impedance value.

Setting the front panel **REMOTE/LOCAL** switch to **LOCAL overrides** the **REMOTE** option settings and always sets the supplied impedance to the value selected using the front panel thumbwheels, regardless of the **REMOTE** option’s assertion of control.

The **REMOTE BCD** option sets impedance values and asserts control using TTL logic. The impedance values are BCD encoded as shown in table 4.2.

For IEEE and RS232 units, the **LOCAL** indicator remains on until communication with the unit is initialized. The mode changes to **REMOTE** after controller commands are received.
Chapter 4

BCD INTERFACE OPTION

4.1 BCD Programming

PCS units, with BCD interface option, come with a BCD (Binary Coded Decimal, 1-2-4-8 coding) remote programming capability accessed through the BCD INPUT connector.

The connector is a 50-pin, female, parallel-interface industry-standard connector found on the rear panel. Table 4.1 shows the connector pin numbering. Table 4.2 gives the pin assignments for the BCD input for this connector. There can be as many as 10 digits to be input. For any unit with fewer than 10 digits, only the implemented subset of these will be operational. All other digits may be ignored, and the associated pins may be left open or shorted to ground.

Once the unit is switched to REMOTE with the front panel knob, it may be set to either LOCAL or REMOTE states under external control by properly selecting pins 21 and 22 on the BCD INPUT rear panel connector as shown in Table 4.1. Note that both pins must be set. The REMOTE and LOCAL led’s will respond accordingly. Once the PCS is set to REMOTE, the thumbwheel switches become disabled, and impedance control is transferred to the rear panel connector.

In addition, two special optional function pins are provided to set the unit to Open-circuit or (optional) Short-circuit states across the HI and LO terminals on the front panel. Applying a low to pin 34 activates an open circuit condition. If the short circuit option is present (this option provides a lower resistance short circuit than a zero setting), applying a high to pin 35 provides a short circuit. If these functions are not required, these two pins may be left open, or the opposite logic levels may be applied, i.e. high to pin 34 and low to pin 35. If both pins are activated, the system will be in the short-circuit mode. If the short-circuit option is not present, pin 20 may be left in any state.

| 25 | 24 | | 2 | 1 |
| 50 | 49 | | 27 | 26 |

Table 4.1 BCD INPUT Connector
(Viewed from rear of instrument)
<table>
<thead>
<tr>
<th>Pin No.</th>
<th>BCD Code Weight</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>100-900 pF</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1-9 nF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>10-90 nF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>100-900 nF</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>1-9 µF</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>10-90 µF</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Open-circuit control</td>
<td>Low to activate; otherwise high or open.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Short-circuit control (optional)</td>
<td>High to activate; otherwise low or open; If option is absent, pin may be in any state.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Earth ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>+5V, 10 mA maximum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Earth ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>LOCAL/REMOTE select</td>
<td>High for LOCAL; Low for REMOTE</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>LOCAL/REMOTE select</td>
<td>Low for LOCAL; High for REMOTE</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Reserved for IEEE-488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Reserved for IEEE-488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Reserved for IEEE-488</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 BCD INPUT Connector Pin Assignments
Chapter 5

IEEE INTERFACE OPTION

5.1 Introduction

The IEEE interface option makes the PCS Series an IEEE-488.2-1987 and SCPI 1994.0 compatible instrument.

The IEEE STD 488.2 covers the electrical and mechanical bus specifications, and state diagrams for each GPIB bus function. It also establishes data formats, common commands for each 488.2 device and controller protocols. The standard is available on-line at http://www.ieee.org or by contacting the IEEE at:

IEEE Corporate Office
3 Park Avenue, 17th Floor
New York, New York
10016-5997 U.S.A.
Tel: +1 212 419 7900

The SCPI standard provides a tree like series of standard commands for programmable instruments so that similar instruments by different manufacturers can be controlled by the same program. SCPI information and a command reference are located in Appendix A.

Other tutorials are available on-line; consult IET for additional information. A software GPIB “keyboard” may be requested from IET to perform elementary commands for training and testing. See Section 5.5.

5.2 Capabilities

The IEEE option provides remote control over all functions except POWER.

<table>
<thead>
<tr>
<th>Decimal Address</th>
<th>SWITCH SETTINGS 5-4-3-2-1</th>
<th>Decimal Address</th>
<th>SWITCH SETTINGS 5-4-3-2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-0-0-0-0</td>
<td>16</td>
<td>1-0-0-0-0</td>
</tr>
<tr>
<td>1</td>
<td>0-0-0-0-1</td>
<td>17</td>
<td>1-0-0-0-1</td>
</tr>
<tr>
<td>2</td>
<td>0-0-0-1-0</td>
<td>18</td>
<td>1-0-0-1-0</td>
</tr>
<tr>
<td>3</td>
<td>0-0-0-1-1</td>
<td>19</td>
<td>1-0-0-1-1</td>
</tr>
<tr>
<td>4</td>
<td>0-0-1-0-0</td>
<td>20</td>
<td>1-0-1-0-0</td>
</tr>
<tr>
<td>5</td>
<td>0-0-1-0-1</td>
<td>21</td>
<td>1-0-1-0-1</td>
</tr>
<tr>
<td>6</td>
<td>0-0-1-1-0</td>
<td>22</td>
<td>1-0-1-1-0</td>
</tr>
<tr>
<td>7</td>
<td>0-0-1-1-1</td>
<td>23</td>
<td>1-0-1-1-1</td>
</tr>
<tr>
<td>8</td>
<td>0-1-0-0-0</td>
<td>24</td>
<td>1-1-0-0-0</td>
</tr>
<tr>
<td>9</td>
<td>0-1-0-0-1</td>
<td>25</td>
<td>1-1-0-1-0</td>
</tr>
<tr>
<td>10</td>
<td>0-1-0-1-0</td>
<td>26</td>
<td>1-1-0-1-0</td>
</tr>
<tr>
<td>11</td>
<td>0-1-0-1-1</td>
<td>27</td>
<td>1-1-0-1-1</td>
</tr>
<tr>
<td>12</td>
<td>0-1-1-0-0</td>
<td>28</td>
<td>1-1-1-0-0</td>
</tr>
<tr>
<td>13</td>
<td>0-1-1-0-1</td>
<td>29</td>
<td>1-1-1-0-1</td>
</tr>
<tr>
<td>14</td>
<td>0-1-1-1-0</td>
<td>30</td>
<td>1-1-1-1-0</td>
</tr>
<tr>
<td>15</td>
<td>0-1-1-1-1</td>
<td>31</td>
<td>Reserved, do not use</td>
</tr>
</tbody>
</table>

Table 5.1 IEEE Bus Address Settings

5.3 Address Switch and Communications Settings

Each GPIB bus device is identified by a five-bit binary address. There are 32 possible primary addresses 0 through 31; addresses 0 and 31 are reserved. The PCS BUS ADDRESS switch on the rear panel establishes the GPIB address of the unit. Bus address settings are read at power up. Refer to table 5.1.

5.4 IEEE Option Operation

The IEEE controller asserts the remote mode upon receipt of a valid command. The REMOTE LED will light and impedance settings will be controlled.
through the IEEE interface if the REMOTE/LOCAL switch is in the REMOTE position. Remote control may be dropped by issuing an IEEE GTL command. Dropping remote sets the PCS output to the value set on the front thumbwheel switches. See Chapter 3 for information about REMOTE/LOCAL functionality.

5.5 GPIB Test Keyboard

To aid the user in operating the PCS, a GPIB “Keyboard” Controller program - the easiest way to control GPIB devices without writing a program - is available from IET. This GPIB Keyboard program automatically finds your device at start-up and it lets you enter just the data that you want to send to the device. This program works with ICS, Measurement Computing and National Instruments controllers.

To implement, request a download of ICS_GPIBkybd_Install.zip from IET Labs Tech Support.

Unzip the file and follow instructions to install.

Open the application. You may use the Find Listeners button to confirm that the PCS unit is recognized. Other instruments may also be recognized at this time.

Enter and set the Address to the PCS address. Use the window to send a command string to the PCS, where the command string is constructed as described in Chapter 7. A command string might be, for example:

SOURce:DATA capacitance string
Chapter 6

SERIAL INTERFACE OPTION

6.1 Introduction

The SERIAL option adds RS-232C and SCPI 1994.0 capability to the PCS series instruments. The SCPI standard provides a tree like series of standard commands for programmable instruments so that similar instruments by different manufacturers can be controlled by the same program. A PCS SCPI command reference is included in Appendix A.

Tutorials are available on-line; consult IET for additional information. A software Serial “keyboard” may be requested from IET to perform elementary commands for training and testing. See Section 6.5.

6.2 Capabilities

The SERIAL option provides remote control over all functions except POWER.

6.3 Signal Interface and Communications Settings

A 25 pin male DTE interface connector conforming with EIA-STD-RS-530 is located on the rear-panel. The default communications parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range/Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud</td>
<td>9600</td>
<td>300 - 115,200</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>7 or 8</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
<td>Odd, Even, None</td>
</tr>
</tbody>
</table>

Connection of a PC to the PCS SERIAL option is typically made through a simple null-modem or “LapLink” cable.

<table>
<thead>
<tr>
<th>IET Pin</th>
<th>RS232 Signal Name</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA Chassis</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>BA Send Data</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BB Receive Data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CA Request to Send</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CB Clear to Send</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CF Signal Detected</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CD Data Terminal Rdy</td>
<td></td>
</tr>
</tbody>
</table>

6.4 SERIAL Option Operation

The SERIAL option uses the same command set as the IEEE option. Additional commands exist for configuring the serial interface. Changes to the serial UART take place at power-on or after a reset.

Serial SCPI command strings must be followed by a <LF> to terminate the message. Every command returns a response that includes a message terminator. The program/operator should wait for this message terminator before sending additional commands.

Command characters are not echoed to the interface on power up. Send <CTRL-E> to force the controller to echo commands back to the interface or <CTRL-F> to disable echo.

By default, the controller returns “>” and <LF> as a prompt after executing any command. When echo is turned ‘On’, the controller returns <CR><LF> and “>” as a prompt after executing any command.

<table>
<thead>
<tr>
<th>Echo-back Mode</th>
<th>RS232 Prompt</th>
<th>Message Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>CR LF ></td>
<td>CR LF</td>
</tr>
<tr>
<td>Off</td>
<td>>LF</td>
<td>LF</td>
</tr>
</tbody>
</table>
6.5 Serial Test Keyboard

To aid the user in operating the PCS, a Serial “Keyboard” Controller program - the easiest way to control serial devices without writing a program - is available from IET. This Serial Keyboard program automatically finds your device at start-up and lets you enter just the data that you want to send to the device. This program works with ICS, Measurement Computing and National Instruments controllers.

To implement, request a download of:
ICS_Serkybd_Install.zip, from IET Labs Tech Support

Unzip the file and follow instructions to install.

Open the application. Initialize the COM PORT and use the Device Command window to send a command string to the PCS, where the command string is constructed as described in Chapter 7. A command string might be, for example:

SOURce:DATA capacitance string
CHAPTER 7
PROGRAMMING

7.1 Introduction

PCS units equipped with IEEE or SERIAL options implement a consistent SCPI interface. A SCPI command reference is included in Appendix A.

7.2 Command String Structure

Output is controlled in the form of a single SCPI command followed by a space and a 10 character Capacitance String. Each character in the string represents the value of one decade, equivalent to one possible manual thumbwheel switch on the front of the unit.

This Capacitance String is constructed as:

- The number is in units of 1pF
- All 10 characters must be provided; the active characters are the ones that match the front panel thumbwheel decades.
- The decade values are straight-reading, from left to right. All preceding and trailing zeros must be included to complete 10 characters; any other characters in those spaces will be ignored.
- A decimal point may not be included.

The Capacitance String has a minimum resolution of 1pF with this decade assigned to the right-most character in the string. To create the SCPI command:

- Determine the desired value, in pF
- Convert the integer portion of the value to a string,
- Pre-pend 0's to create a 10 character Capacitance String
- Combine with the “SOURce:DATA ” command.

For example:

<table>
<thead>
<tr>
<th>Value</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 pF</td>
<td>SOURce:DATA 0000000600</td>
</tr>
</tbody>
</table>

Values sent for decades not implemented in the PCS are ignored. Setting a PCS with 4 decades and a minimum resolution of 1nF to 53,200 pF would result in an actual value of 53,000 pF. For example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce:DATA 000002700</td>
<td>53,000 pF</td>
</tr>
<tr>
<td>SOURce:DATA 0099999900</td>
<td></td>
</tr>
</tbody>
</table>

Optional Open Circuit (OC) and Short Circuit (SC) are implemented as standard decades positioned at the Most Significant Decade plus one. For example, the Capacitance String for the Open circuit and Short circuit modes are:

Open circuit SOURce:DATA 100XXXXXXXX
Short circuit SOURce:DATA 200XXXXXXXX
(where X = any Resistance String)

OC and SC modes may be used to create a “controlled transition” between two values without concern for transitional switching of the relays.

- Output command for C1.
- Output command for C1 plus a SC Mode Character.
- Output command for C2 plus a SC Mode Character.
- Output command for C2.

This technique also applies to the Open circuit mode.

OC/SC mode Character =

0, 4, 8, or absent for NORMAL operation
1, 5, or 9 for OPEN CIRCUIT operation -optional
2, 3, 6, or 7 for SHORT CIRCUIT operation -optional
7.3 Advanced Programming - Software Drivers

Basic control of a PZS can be automated by writing a function that accepts a numeric value and converts it to the string using the method described previously.

If the PZS is to be used in an automated environment where various models and options may be installed or where interchangeability is a requirement, a driver can be written that abstracts the device specific functions from the test sequence.

The PZS family of instruments are available in many models (including inductance, resistance and capacitance) ranges, (1 pico Unit to 100 MegaUnit) and with various options. Information to create a more robust driver to control a PZS instrument is listed below.

7.3.1 Determining the PZS Configuration

The IEEE 488.2 specification defines the *IDN string as containing 4 sections separated by commas; the manufacturer, the model, the serial number and the revision of the instrument.

The Model section of the *IDN string of the PRS has been encoded to provide information about the characteristics of the specific instrument being used. For example, a *IDN query to a PZS might return:

IET Labs,PRS-200-F-6-100m-0-0,D6-0211201,D6

In our example above, the Manufacturer section contains “IET Labs”, the Model section contains “PRS-200-F-6-100m-0-0”, the Serial Number section “D6-0211201” and the Revision section “D6”. The model is split into 7 parts with dashes to identify:

Type
Version
Tolerance
Number of Decades
Least Significant Decade
Slot of LSD
Options

Type:
PRS Resistance Substituter
PCS Capacitance Substituter
PLS Inductance Substituter

Version:
200
201
202
300
301
400

Tolerance:
X: 0.01%
Q: 0.02%
A: 0.05%
B: 0.1%
C: 0.5%
F: 1%
G: 2%
H: 4%

LSD:
100p 100 pUnit
1n 1 nUnit
10n 10 nUnit
100n 100 nUnit
1u 1 uUnit
10u 10 uUnit
100u 100 uUnit
1m 1 milliUnit
10m 10 milliUnit
100m 100 milliUnit
1 1 Unit
10 10 Unit
100 100 Unit
1K 1 KUnit
10K 10 KUnit
100K 100 KUnit
1M 1 MegaUnit
10M 10 MegaUnit

Open Circuit / Short Circuit Option:
0 not equipped
1 Open Circuit option present
2 Short Circuit option present
3 Both OC/SC present

7.3.2 Instrument Initialization
Reset the unit to power up defaults using *RST
 Parse the IDN string to extract the IDN String Model (second) section. Parse this further to determine:

let iTyp = type of device (R,L,C,RTD; enum 0-3)
let iModel = model (200,201,202, 300,301,400; enum 0-5)
let iTol = tolerance (see section 7.3.1; enum 0-10)
let iDec = value of “Number of Decades”
let nMin = numeric value of LSD (see section 7.3.1)
let locLSD = location of the LSD on system board
let iOption = options installed (see section 7.3.1)
let iMax = (iMin*10**nDec)

Calculate iMax. In our example, the LSD is 100m or 0.1 Ohms and the number of decades is 6

iMax = (0.1*10**6)-iMin ; or iMax = 99,999.9

7.3.3 Source Impedance

Range test the desired output value against iMin and iMax. Coerce the supplied value to the max or min, return an error code, or use optionally equipped OC/SC features per your needs.

Example 1:
let iModel = 0 (model 200/201 system board)
let iValue equal 123.51
iValue is < 99,999.9 and > 0.1;
therefore iValue = 123.51

Example 2:
let iModel = 1 (model 202 system board)
let iValue equal 1,000,000
iValue is > 99,999.9;
if iOption = 1 or 3 then iValue = 100,000.0
else iValue = 99,999.9

Multiply iValue by one over iMin to shift the digits below the operating range of the PRS to the right of the decimal point (in this case, 10). Select the integer portion of iValue

Example 1:
iValue=iValue*(1/iMin)
iValue=123.51*(1/.1); or iValue = 1235.1
iValint=int(iValue); or iValint = 1235

Example 2:
iValue=iValue*(1/iMin)
iValue=100,000*(1/.1); or iValue=
1,000,000.0
iValint = int(iValue); or iValint = 1000000

Shift this value to align it with the location of the first decade in the PRS. locLSD from our IDN string evaluation is 1, so:

Example 1:
iValint = iValint * (1*10^(locLSD))
iValint = 1235 * (1*10^(0))
iValint = 1235 * 1; or iValue = 1235

Example 2:
iValint = iValint * (1*10^(locLSD))
iValint = 1000000 * (1*10^(0))
iValint = 1000000 * 1; or iValue = 1000000

Convert the number to a string value using a “format” function that includes leading zeros. The 200,201,300, 301 and 400 Series units have 10 decade locations, the 202 Series has 12.

prsCmd = “SOURce:DATA “
& format(iValue,”0000000000”)

Example 1:
“SOURce:DATA 000001235”

Example 2:
“SOURce:DATA 000001000000”
SCPI is an acronym for “Standard Commands for Programmable Instruments”. For additional information or an on-line copy of this standard, see:

The IEEE 488.2 Standard was established in 1987 to standardize message protocols, status reporting and define a set of common commands for use on the IEEE 488 bus. IEEE 488.2 devices are supposed to receive messages in a more flexible manner than they send. A message sent from GPIB controller to GPIB device is called: PROGRAM MESSAGE. A message sent from device to controller is called: RESPONSE MESSAGE. As part of the protocol standardization the following rules were generated:

(); Semicolons are used to separate messages.
(:) Colons to separate command words.
(,) Commas to separate data fields.
<nl> Line feed and/or EOI as last character terminates a 'program message'.
Line feed (ASCII 10) and EOI terminates a RESPONSE MESSAGE.
(*) Asterisk defines a 488.2 common command.
(?) Ends a query where a reply is expected.

SCPI builds on the programming syntax of 488.2 to give the programmer the capability handling a wide variety of instrument functions in a common manner. This gives all instruments a common "look and feel".

SCPI commands are not case sensitive.

The portion of commands shown in capitals denotes the abbreviated form of the keyword. Either the abbreviated or whole keyword may be used when entering a complete command. There must be a space between the command and a parameter or channel list. Multiple SCPI commands may be concatenated together as a compound command using semicolons as command separators.

Keywords shown inside braces [] are defaults, and are optional when constructing a PROGRAM MESSAGE.

Commands not recognized have no effect on the unit's operation and will set the corresponding bits in the Standard Event Status Register. SCPI commands that end with a question mark '?' are queries. All queries should be followed by reading their response to avoid data loss.
PCS Series

Notes & Short Parameter Form

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Form Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTem</td>
<td>System Address</td>
</tr>
<tr>
<td>:COMMunicate</td>
<td>IEEE option only</td>
</tr>
<tr>
<td>:GPIB</td>
<td>SERIAL option only</td>
</tr>
<tr>
<td>:MODE</td>
<td>SINGle</td>
</tr>
<tr>
<td>:SERial</td>
<td>0</td>
</tr>
<tr>
<td>:EXTernal</td>
<td><numeric value> [9600]</td>
</tr>
<tr>
<td>:BAUD</td>
<td>EVEN</td>
</tr>
<tr>
<td>:PARity</td>
<td>7</td>
</tr>
<tr>
<td>:BITS</td>
<td>[1]</td>
</tr>
<tr>
<td>:SBITs</td>
<td>0</td>
</tr>
<tr>
<td>:NETwork</td>
<td>0-15 [4]</td>
</tr>
<tr>
<td>:ADDRes</td>
<td>no value-command only</td>
</tr>
<tr>
<td>:UPdate</td>
<td>0</td>
</tr>
<tr>
<td>:ERRor?</td>
<td>(0, "No error")</td>
</tr>
<tr>
<td>:VERSion?</td>
<td>(1994.0)</td>
</tr>
<tr>
<td>SOURce</td>
<td>Port Output</td>
</tr>
<tr>
<td>[:DIGital]</td>
<td>PO</td>
</tr>
<tr>
<td>:DATA</td>
<td>BCD coded digits representing the possible decade values</td>
</tr>
<tr>
<td>[:VALue]</td>
<td>CALibrate</td>
</tr>
<tr>
<td>:DATE?</td>
<td>mm-dd-yyyy</td>
</tr>
</tbody>
</table>
Appendix B

IEEE-488.2 COMMON COMMANDS

The PCS-200 is compliant with the complete command set defined in the IEEE-488.2 specification. As an output device, the required input related commands such as SRQ and TRG are implemented in the controller but have no affect on the operation of the instrument.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>* CLS</td>
<td>Clear Status</td>
<td>Clears all event registers summarized in the status byte, except for "Message Available," which is cleared only if *CLS is the first message in the command line.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event Status Register Query</td>
<td>PRS returns the <value> of the "Event Status Register" and then clears it. <value> is an integer whose binary equivalent corresponds to the state (1 or 0) of bits in the register. Reading of this register resets the contents to zero.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification Query</td>
<td>Returns its identification code as four fields separated by commas. These fields are: manufacturer, model, serial number and hardware version.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Restores the PCS to power-up state; state of IEEE interface is unchanged, including: instrument address and Status Byte. Allow the REMOTE option 150ms to complete command.</td>
</tr>
<tr>
<td>*SAV <value></td>
<td>Save</td>
<td>Saves current configuration in the Flash. *SAV 0 saves the current setting as the new power on setting.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read Status Byte</td>
<td>Returns the value of the "Status Byte" with bit six as the "Master Summary" bit. The value is an integer whose binary equivalent corresponds to the state of bits in the register.</td>
</tr>
</tbody>
</table>